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Abstract—The advent of microservice architecture has led
to a significant shift in the development of service-oriented
software. In particular, the use of Remote Procedure Call (RPC),
a mode of Inter-Process Communication (IPC) prevalent in
microservices, has noticeably increased. To figure out the rela-
tionships between services and obtain a high-level understanding
of service-oriented software, a line of recent work focuses on
the dynamic construction of service call graphs, which relies on
the preliminary deployment of services and only captures the
calling relationships within a specific time frame. Meanwhile,
static methods avoid the need for pre-deployment and often
provide a more stable and complete graph compared to dynamic
techniques. However, research and practical applications of static
call graph construction remain relatively unexplored.

This paper introduces RPCover, a novel gRPC dependency
recovery framework that facilitates the interconnection of ser-
vices across various programming languages using their static
gRPC calls. In addition, due to the lack of a multilingual
microservice benchmark that uses gRPC, we build the first
multilingual benchmark RPCoverBench that contains complex
gRPC call relations. RPCover has been evaluated on a single
language benchmark (DeathStarBench) and our multilingual
benchmark (RPCoverBench). The results show that RPCover
effectively recovers 99.33% of the use cases of gRPC calls with
less than 200% of the overhead compared with a single-language
semantic dependency analyzer.

Index Terms—gRPC, dependency recovery, microservice

I. INTRODUCTION

Microservice architecture [1], [2] has become increasingly
popular in software development due to its ability to improve
agility, scalability, and reliability. However, with the growing
usage of microservice, several challenges arise. As the level
of microservice system complexity increases, there is a risk
of accumulating technical debt [3]. One notable debt is the
proliferation of point-to-point connections among services,
which can lead to significant costs in terms of system evolution
and maintenance [3]. To mitigate such technical debt, many re-
searchers have attempted to perform service-level dependency
analysis to reconstruct the architecture of the services.

Prior research in the field of service-level dependency anal-
ysis can be broadly classified into two main methodologies:
dynamic analysis [4]–[13] and static analysis [14]–[20]. Dy-
namic analysis is a technique that executes the system across
a range of inputs. Instead of extracting system data from the
source code, the analysis is conducted by evaluating generated
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logs or collected run-time metrics. This approach provides
real-time insights into system behaviors under different con-
ditions. On the other hand, static analysis is a method that
leverages the code base to reconstruct the system architecture.
This is achieved by utilizing the system information embedded
within the source code and other associated artifacts, offering a
comprehensive understanding of the inherent system structure
and potential dependencies. Despite the capabilities of both
dynamic and static methods in analyzing services and their
dependencies, current works have their own limitations.

Dynamic analysis, which tracks service dependency rela-
tionships using real-time metrics such as logs and traces, can
yield results that vary significantly when metrics are collected
at different times. A study by Luo et al. [11] reveals that a
single online service can have up to nine distinct classes of
topologically different graphs, which may influence analyz-
ing runtime performance significantly. Additionally, dynamic
analysis requires a well-established infrastructure, including
available relevant logs and traces, for effective conduct. How-
ever, not all systems have this kind of infrastructure in place.

Static analysis can offer a partial solution to the limitations
of dynamic analysis in terms of producing consistent results
for the same code repository. However, it inherently lacks
completeness because it sacrifices the language-independent
characteristics of dynamic analysis [14], [15], [18]. This
limitation poses challenges to its applicability in multilingual
services, rendering it incomplete in this context, as there is no
trace indicating the calling chain. While certain efforts have
been made to unify static analysis across different program-
ming languages [17], these methods typically require extra
efforts to accommodate various programming languages.

In a microservice architecture, gRPC is a commonly used
communication mechanism among services. However, existing
studies do not adequately illustrate the complete gRPC calling
relations among microservices. gRPC requests are described
in an intermediate representation (IR) and then compiled into
interfaces in multiple languages. It is challenging to extract
call graphs among microservices by utilizing conventional
single-language semantic analysis, as it cannot trace the call
relation to another microservice. Schiewe et al. [17] proposed
the use of LAAST (Language-Agnostic Abstract Syntax Tree)
to potentially alleviate this issue. However, the extension of
LAAST to other programming languages presents a challenge
because the abstractions differ between languages.



To tackle these challenges, this paper introduces RPCover
as the first framework to automatically identify the depen-
dencies between gRPC (a widely used implementation of
RPC) in multilingual microservices. Our approach begins
with an intra-service analysis, where a single-language se-
mantic dependency analyzer is applied to each microservice
to extract dependencies within the service. Subsequently, an
inter-service analysis is performed using gRPC definitions.
This analysis, which involves matching all possible call and
implementation sites of gRPC services and requests in the
dependency indexes, allows us to establish the gRPC call
relations among microservices. Finally, RPCover integrates
the inter-service dependency graph into a unified index file,
ensuring compatibility with various editors and graph viewers.
This enables easy integration and analysis of the output graph
and its further visualization.

In addition, we build a microservice benchmark incorporat-
ing multiple remote procedure calls (RPC) invocations among
these services, written in five distinct programming languages.
This benchmark enables us to effectively evaluate the per-
formance and adaptability of our framework. Results indicate
that RPCover achieves 99.33% accuracy in the benchmarks,
with an overhead less than 200% compared to LSIF language
semantic dependency analyzers.

In summary, this paper makes the following contributions:
• Approach. We propose RPCover, a gRPC dependency

recovery technique based on the SCIP index, which
provides easy adoption to different projects and program-
ming languages.

• Benchmark. We construct a microservice benchmark
consisting of fifteen services across five widely-used
backend programming languages, which simulates poten-
tial design flaws in production environments and allows
performance assessment of software architecture recon-
struction.

• Open source. Our tool [21] and benchmark [22] have
been publicly released.

II. BACKGROUND

This section provides an overview of the fundamental con-
cepts employed in this paper, including microservice, Software
Architecture Reconstruction (SAR), Remote Procedure Call
(RPC), dependency terminology, Protocol Buffers, Language
Server Index Format (LSIF), and SCIP Code Intelligence
Protocol (SCIP).

A. Microservices

Microservices, an architectural style inspired by service-
oriented computing, facilitates the design of highly scalable
and maintainable software through orchestrating compact ser-
vices [23]. However, the lack of a definitive standard for deter-
mining architectural quality can lead to unintentional technical
debt [24], [25]. This includes issues such as excessive inter-
service connections, inappropriate incorporation of business
logic within the communication layer, and poor source code
management across different services [3]. To address these

challenges, many researchers are working on reconstructing
the software architecture, which will be introduced in the next
section.

B. Software Architecture Reconstruction

Given the potential for architectural deterioration due to
technical debt [25], proactive software architecture recon-
struction becomes crucial for identifying design issues and
maintaining organized services. Dynamic and static analysis
are the primary methods for this process [26].

1) Dynamic Analysis: Dynamic analysis, independent of
programming language, captures intricate software behavior
and extracts runtime metrics. However, its reliability depends
on tracking the function calling chain within a time frame. A
missing calling chain will result in an incomplete dependency
graph [4]. Common approaches to reconstruct microservice
architecture include log analysis [5], tracing analysis [6]–[11],
and monitoring [12], [13].

2) Static Analysis: Static analysis provides a consistent
view of software architecture, proving beneficial for pre-
emptive use prior to service deployment. It facilitates early
detection of potential issues, thereby ensuring stability and per-
formance. Tools such as Microvision [14] and LAAST employ
Abstract Syntax Tree (AST) for architectural reconstruction.
While Microvision is language-specific, LAAST [17] aims
to unify ASTs across various languages. However, static
analysis sacrifices the language-independence characteristic of
dynamic analysis, as it necessitates a unique frontend for each
programming language to extract relevant information during
the analysis process. This requirement imposes additional
implementation works.

C. Remote Procedure Call

Remote Procedure Call (RPC), a protocol allowing proce-
dures to execute on remote systems as if they were local,
simplifies networking and distributed application development
[27]–[29]. gRPC, a high-performance and open-source imple-
mentation of RPC, has shaped current RPC standards and
efficiently connects services across data centers. Extensive
research has been conducted to optimize the RPC process,
such as speeding up the RPC process [30], identifying the
critical paths of microservices [31], and analyzing the overall
structure of microservices [10].

D. Dependency

We classify dependencies into two types: service-level de-
pendency and function-level dependency. Service-level depen-
dencies exist when one microservice relies on another, often
through gRPC calls. Function-level dependencies occur when
one function depends on another. If two dependent functions
reside in separate services, both service-level and function-
level dependencies are present. If they are in the same service,
only a function-level dependency exists. For instance, an RPC
call represents a service-level dependency, while a regular
function call indicates a function-level dependency.



E. Protocol Buffers

Protocol Buffers [32] (Protobuf) is a binary serialization
format developed by Google for efficient communication be-
tween systems. It uses a schema to define the structure of
data and encodes it into a compact binary format, resulting
in smaller message sizes. Protobuf finds applications [33] in
network communication [34], data storage, and inter-process
communication, offering flexibility and compatibility across
multiple programming languages.

Protocol Buffers are widely used as an intermediate rep-
resentation (IR) for describing inter-language structures. For
example, gRPC defines its service and request objects in
Protocol Buffers and then utilizes Protocol Buffer compiler
plugins to translate these definitions into interfaces in multiple
languages.

F. Representations of Code Dependencies(LSIF and SCIP)

The Language Server Index Format [35] (LSIF) and SCIP
Code Intelligence Protocol (SCIP) [36] are popular language-
independent representations of code dependencies. They use a
general structure to encode the semantic relationship for code
navigation, including definition, reference, and implementation
relationships. LSIF encompasses relations between seman-
tic symbols using edge labels like textDocument/definition,
textDocument/references, and textDocument/implementation.
Fig. 1 provides an example of textDocument/definition. The
LSIF indexer will translate the input source code into a graph
that delineates nodes and edges. Each node represents an
identifier, while each edge signifies a relationship between
nodes.

Unlike LSIF, SCIP, which is developed by Sourcegraph
[37], encodes rich semantic dependency information directly
in nodes, thereby eliminating the need for constructing a
complex graph. For example, the definition relationship in
SCIP is preserved as an attribute of the reference site, rather
than a labeled edge connecting the definition node and the
reference site. By forgoing graph representation and instead
employing Protobuf encoding of symbols and relationships,
Sourcegraph asserts that SCIP indexes are, on average, four
times smaller when compressed with gzip, compared to their
LSIF counterparts. Furthermore, uncompressed LSIF payloads
are about five times larger in size [38]. SCIP also maintains
compatibility with LSIF by a converter that is capable of
generating an LSIF index from SCIP input.

III. APPROACH

Our research method, shown in Fig. 2, analyzes a collection
of microservices across different languages with complex
gRPC dependencies. The process begins with an Intra-Service
Analysis, where SCIP is used to create index files that outline
dependencies in each microservice. Subsequently, RPCover
carries out an Inter-Service Analysis to identify gRPC de-
pendencies between microservices, with the gRPC Matcher
consolidating these into a unified index file. This unified SCIP
index is then transformed into an LSIF index for further
analysis. Finally, we employ a graph database to visualize the

Fig. 1. Example of textDocument/definition in LSIF [39]. The
reference site of the function bar() in foo() is represented as a node
labeled bar [ref] in the LSIF index. It processes a [result set]
node which maintains an textDocument/implementation edge to its
definition node labeled bar [def].

Fig. 2. Workflow of RPCover

uncovered dependencies, offering an intuitive understanding
of the interrelationships between services.

A. Intra-Service Analysis

Within each microservice, gRPC Protocol Buffer compiler
plugins transform the gRPC service and request definitions
into stubs, as illustrated in Fig. 3 and Fig. 4. To outline
dependencies across different microservices, our first step is
to identify the invocation of a generated gRPC stub within
a particular microservice. To accomplish this, we index each
microservice to map out the corresponding call relationships.

There are two popular formats for semantic analysis. The
LSIF, which heavily relies on edges to expose relationships,
can add complexity and hamper performance when used for
direct analysis. Given this, the SCIP is more apt for such
analysis tasks for the following reasons:

• It holds extensive information, such as source location
and reference relationships, in each symbol object, which
signifies a declaration of a variable, function, or
type in the source code.



Fig. 3. Connection of Single Language Repository, Conn(client, generated-
Code, reference) and Conn(server, generatedCode, implementation)

• It applies URI-based symbol name encoding for quick
and accurate queries across different source files or even
different projects.

Due to these benefits, we choose the SCIP and its corre-
sponding indexers as the Intermediate Representation (IR) for
the analysis process.

As depicted in Step 1 of Fig. 2, RPCover utilizes the
appropriate SCIP indexer to analyze each microservice [36],
establishing function-level dependencies within the service. To
enhance clarity and comprehension of these indexes, we use
the following formula to illustrate the structure of a single
entry stored in the index.

Conn(node1, node2, relationship)

The variables Conn, node1, and node2 represent a con-
nection and two different code stubs, respectively. The vari-
able relationship denotes the relationship between node1
and node2. For example, as shown in Fig. 3, Conn(client,
generatedCode, reference) and Conn(server, generatedCode,
implementation) represent relationships in Python using the
provided client and server stubs. The file generated by the
Protocol Buffer compiler includes both the server stub (which
requires further developer implementation) and the client
stub (which facilitates service invocation by the developer).
The server is implemented in greet_server.py, while
the corresponding service is invoked via the client stub in
greet_client.py. After the indexing phase, we get two
distinct relationships: the implementation relationship between
server stub and its definition site, and the reference relationship
between client stub and its call site. Through these connections
between the generated code and its call or implementation
sites from the SCIP index file, we can identify whether a
microservice implements or calls a certain gRPC service,
forming a foundation for analyzing dependencies between
microservices.

B. Inter-Service Analysis

After the intra-service analysis, we obtain the gRPC server
implementations and request calls in each microservice. How-

Fig. 4. Relationships between Protobuf Definition File and Language Bind-
ings

ever, the call relationships across microservices remain un-
clear. The gRPC request calls are still not associated with
their implementations from one microservice to another. To
fully uncover the gRPC dependencies, we incorporate an inter-
service analysis. This step aims to extract cross-service call
relationships, thereby connecting the separate call graphs of
microservices together via these gRPC call relationships.

For instance, as illustrated in Fig. 4, the Go binding func-
tions might be used on the client side, and the C++ binding
functions on the server side. This setup allows the Go client to
invoke the C++ server. By applying the notation described ear-
lier, we can express the relationship between the Go client and
the C++ server. Our method would then establish the connec-
tion Conn(generatedCodego, generatedCodec++, relationship).

For instance, as illustrated in Fig. 4, a microservice written
in Go may call another microservice written in C++ via
the generated Go bindings and client stubs. By the intra-
service analysis, we have already established the following
relationship within each microservice:

Conn(userCallSitego, clientStubgo, reference) (1)
Conn(userImplSitec++, serverStubc++, reference) (2)

Inter-service analysis would establish the connection

Conn(clientStubgo, serverStubc++, reference)

to associate the connection (1) with (2) and then form a
complete dependency path from the Go microservice to the
C++ microservice.

To construct the connection, it is necessary to characterize
the stubs and the gRPC definitions, thereby constructing
a relationship between them. We define an index type
object to represent stubs in different languages. This object
encapsulates the names of a declared type and its methods,
along with code reference information. These index type
instances are created in the gRPC Matcher when reading SCIP
index files from SCIP indexers, as depicted in Step 2 of Fig.
2. Upon gathering the index type objects for all possible
definitions in the source code of microservices, we use a
matcher to identify possible associations between any pair
of stubs and gRPC definition. Once two stubs from different
microservices are associated with the same gRPC service
definition, we can then conclude the connection between the
two stubs as the example shown above. Algorithm 1 illustrates
the process of building these associations, while Algorithm
2 shows an example of a fuzzy matcher. After establishing



Algorithm 1: Dependency recovery between Protobuf
and SCIP index

Data: gRPC service Protobuf definition sproto, index type
tindex, and a matcher mt

Result: Updated index class t′index, or MISMATCH
1 if mt.MatchService(sproto, tindex) then
2 M ← A map that maps the method to its matched gRPC

request definition
3 for rproto in sproto.Requests do
4 mindex ← mt.FindAndMatchMethod(rproto, tindex)
5 if mindex is nil then
6 return MISMATCH
7 end
8 M [mscip]← rproto
9 end

10 t′ ← tindex.AddRelation(sproto)
11 for mindex, rproto in M do
12 mindex.AddRelation(rproto)
13 t′index ← t′index.UpdateMethod(mindex)
14 end
15 return t′index

16 else
17 return MISMATCH
18 end

the connection, the gRPC Matcher unifies the SCIP index
files from multiple microservices into one and embeds the
newly constructed connections into the unified SCIP index.
Nevertheless, the name normalization strategy might result in
occasional false positives. For instance, RPCover will establish
dependencies irrespective of the specific conditions required in
actual client-server interactions. To address this limitation, a
uniform interface is also provided for users to implement their
own matchers. By defining customized matching algorithms,
one can possibly reduce false positives from the default fuzzy
matcher in a certain usage scenario.

The index type abstraction allows us to overlook
language-specific details during dependency recovery. By
identifying associations between gRPC stubs and definitions,
and combining this with the results of intra-service dependen-
cies from the previous step, RPCover forms the directional
dependency from reference to implementation across microser-
vices, thus revealing inter-microservice dependencies in the
entire system. Furthermore, high-level features derived from
the Protocol Buffer Compiler toolchains can be seamlessly
integrated with RPCover. This includes functionalities such as
the publisher-subscriber patterns, primarily because RPCover
establishes relatively low-level connections between the Pro-
tobuf Definitions and client, and server stubs.

C. Index Conversion and Visualization

After following the steps mentioned above to establish all
the relationships, we obtain a unified SCIP index file with the
gRPC dependency information across microservices encoded.
During this particular stage, the LSIF converter will convert
the SCIP file into an LSIF file. The LSIF converter will discard
redundant information to alleviate the burden on disk storage.
This is necessary as the file consolidates all the preceding

Algorithm 2: Example fuzzy matcher
Data: gRPC service Protobuf definition sproto, gRPC

request Protobuf definition rproto, and index type
from SCIP tscip

Result: True or False of whether the names in index
follows the naming convention

1 def convertName (n):
2 p← Remove non-alphanumeric characters and convert

string n to lowercase
3 return p
4 def FindAndMatchMethod (rproto, tscip):
5 for mscip in tscip.Methods do
6 nr ← convertName(rproto.Name)
7 nm ← convertName(mscip.Name)
8 if nr == nm then
9 return mscip

10 end
11 end
12 return nil
13 def MatchService (sproto, tscip):
14 ns ← convertName(sproto.Name)
15 nt ← convertName(tscip.Name)
16 if nt.HasSubString(ns) then
17 return true
18 end
19 return false

projects, and without this optimization, its size would become
excessively large.

We utilize Memgraph to enhance the comprehension of de-
pendencies. This platform visually illustrates the connections
among various microservices. As shown in Fig. 5, it presents
all the gRPC dependencies among the source files. In our
benchmark, we set up 15 services each implementing a unique
gRPC service, resulting in 15 distinct dependency clusters.
Taking the Go_A.proto cluster as an example, its gRPC
server establishes links with definitions and references dis-
tributed in 19 source files. These include one source file con-
taining the implementation of Go_A service (server.go)
and 18 generated source files from Go_A.proto, as illus-
trated in Table I.

IV. BENCHMARK

In this section, we introduce the limitations of the current
benchmarks and show how we design and implement our
benchmark.

Existing Benchmark: For our research, we investigated
well-established microservice testbeds developed by external
researchers, namely DeathStarBench [40] and TrainTicket
[41]. DeathStarBench includes five end-to-end services, four
for cloud systems, and one for cloud-edge systems running on
drone swarms. TrainTicket consists of 41 Java-based microser-
vices. These testbeds were chosen due to their widespread
usage and their ability to represent diverse systems utilizing
various components. The design methodologies employed by
these testbeds offered valuable insights for related studies.

As the existing benchmark testbeds, DeathStarBench [40]
and TrainTicket [41], primarily focus on one or two pro-



TABLE I
SEARCH RESULT OF GO_A’S RELATIONSHIPS

Index File Name Index File Name
1 Go A/cmd/server.go 11 Go A/proto/Go A grpc.pb.go
2 Cpp A/protos/Go A.grpc.pb.h 12 Go B/proto/Go A grpc.pb.go
3 Cpp A/protos/Go A.grpc.pb.cc 13 Go C/proto/Go A grpc.pb.go
4 Cpp B/protos/Go A.grpc.pb.h 14 Java A/src/main/benchmark/Go AGrpc.java
5 Cpp B/protos/Go A.grpc.pb.cc 15 Java B/src/main/benchmark/Go AGrpc.java
6 Cpp C/protos/Go A.grpc.pb.h 16 Java C/src/main/benchmark/Go AGrpc.java
7 Cpp C/protos/Go A.grpc.pb.cc 17 Python A/protos/Go A pb2 grpc.py
8 Ts A/protos/Go A.ts 18 Python B/protos/Go A pb2 grpc.py
9 Ts B/protos/Go A.ts 19 Python C/protos/Go A pb2 grpc.py
10 Ts C/protos/Go A.ts

Fig. 5. Overview of benchmark visualization. Each cluster represents a gRPC
Protocol Buffer definition and its related source files which have a reference
between them.

gramming languages. Additionally, only DeathStarBench in-
corporates gRPC in its services. Hence, we have identified
the necessity of developing our own benchmark to thoroughly
evaluate our performance.

RPCoverBench: We want to benchmark RPCover in the
following scenarios:

• Direct gRPC dependencies among microservices written
in the same programming language

• Direct gRPC dependencies among microservices written
in different programming languages

• Long dependency chains involving multiple microser-
vices.

Moreover, we have considered the typical behavior of a
service. Specifically, a service often functions as either a single
client, a single server, or both.

In light of these requirements, we built a benchmark con-
sisting of fifteen services across five programming languages

to evaluate our approach in establishing interdependent multi-
lingual services using gRPC. We selected the five most widely
used backend programming languages (i.e., C++, Java, Python,
Go, TypeScript) for the implementation of microservices.
Additionally, we implemented three microservices for each
language, as this is the minimum number necessary to create
potential indirect dependencies within the microservices of the
same language, with each service potentially acting as a client,
server, or both.

This benchmark, which includes both typical and excep-
tional scenarios, enabled us to assess the efficiency and
effectiveness of our approach. To be more intuitive, Fig.
6 represents the layout of our simplified benchmark, with
each dashed square denoting a specific language’s service
implementation. Each square comprises two or three types of
circles, with each circle representing an individual service.

• The green circle symbolizes the pure gRPC client, which
solely invokes gRPC servers of other services.

• The red circle represents the pure gRPC server, which
exclusively functions as a gRPC server, awaiting client
requests.

• The yellow circle encompasses both scenarios, as it serves
as both a client and a server simultaneously.

Each programming language provides three services, each
of which comprises three functions. Each function calls several
other functions, which can either belong to the same service or
originate from external services. This is denoted in the Depen-
dent Services Function ID column. The function IDs follow
the format [language]-[service name]-[function number]. For
instance, in Python service A, function Python-A-1 would
call Python-A-2, Python-B-1, and Python-C-1. For
detailed information about the services, please refer to the
benchmark repository [22].

V. EVALUATION

In this section we aim to answer the following research
questions:

• RQ1: What is the coverage of the RPCover in finding
the gRPC dependency?

• RQ2: How effective does the RPCover compared with
the existing LSIF-based semantic dependency analyzers
in terms of the execution time?



Fig. 6. Simplified Benchmark Layout

We ran the RPCover to analyze RPCoverbenchmark and the
hotelReservation test from the DeathStarBench on a machine
with 13th Gen Intel Core i5-13400; 126GB RAM; 1T SSD,
running Ubuntu 22.04.

A. Result Analysis: coverage

In evaluating our approach, we consider both precision and
recall. We manually count the gRPC calls in DeathStarBench
[40] and our proposed benchmark RPCoverBench. As outlined
in Table II, DeathStarBench comprises 7 gRPC calls, while
RPCoverBench includes 142 gRPC calls. Using our method,
RPCover identifies 7 function-level dependencies in Death-
StarBench. Of these, 7 are correct, yielding a precision of
100%. This gives a recall of 100%. In the RPCoverBench
evaluation, RPCover correctly identifies 142 function-level
dependencies out of a total of 142 with 1 false-positive,
resulting in a precision of 99.30%. The recall in this case
is 100%.

In examining the misrecognized gRPC calls, we found that
false positives arise when a struct shares the same name and
function name as a service definition in a Protocol Buffer
file. This leads RPCover to erroneously identify the struct as
an implemented service, even though it is not. This case is
unusual because the likelihood of writing a struct, which shares
the same name and method names but has no relationship with
the Protocol Buffer definition, is quite low.

To demonstrate our visualization results, we select the Hotel
Reservation service from the DeathStarBench as an example.
The outcome of the Software Architecture Reconstruction
(SAR) is depicted in Fig. 7. The Hotel Reservation mi-
croservice cluster consists of seven sub-services: user, profile,
recommendation, reservation, search, rate, geo, and frontend.
Utilizing visualization platforms such as Memgraph or Neo4j,
we can uncover the relationships between services within the
cluster. For instance, the search service interacts with both
the rate and geo services, whereas the frontend service makes
calls to its related services.

Fig. 7. SAR of DeathStarBench’s hotel reservation services cluster

B. Result Analysis: effectiveness

To answer RQ2, we evaluate the time and memory ex-
penditure of RPCover across two benchmarks, taking into
consideration both the programming language and the number
of code lines.

Taking the single-language LSIF indexing with open-source
indexers as the baseline, we conducted 20 runs of RPCover
on each benchmark (i.e., DeathStarBench and RPCoverBench)
and calculated the average cost. As presented in Table III and
IV, the time overhead introduced by RPCover was found to
be below 150%. The performance is primarily determined by
the base SCIP indexer that is utilized, as the gRPC matching
cost only accounts for 3-5% of the indexing task. Specifically,
RPCover brings overhead only in C++ projects. The main
reason for this large overhead is that C++ SCIP indexer does
more work than the LSIF indexer. The C++ SCIP indexer
analyses the source code in a more precise way with each
translation unit considered, whereas the C++ LSIF indexer
omits some of the external header files. In other languages, we
even gain a performance boost using RPCover. The memory
overhead brought by RPCover is less than 100%. Note that
the baseline time cost and memory usage for the Java project
is not applicable since we could not find a usable Java
LSIF indexer. Currently, there are only two LSIF indexers for
Java: lsif-java [42] developed by Sourcegraph has been
deprecated, and lsif-java [43] developed by Microsoft can
only run on Windows.

In addition, to further illustrate the performance impact
brought by RPCover, we selected large-scale projects that
employ gRPC and applied RPCover to them. Due to the lack of
large open-source projects with microservice dependencies, we
selected grpc and grpc-go with extensive Protocol Buffer
dependencies (i.e., for example, grpc has 277 Protocol Buffer
definition files), which require RPCover to match and construct
dependencies between numerous symbols. The results show
that the overhead brought by RPCover is also acceptable. The
time overhead was approximately 175% for grpc and 22%



TABLE II
RQ1: RESULT

Benchmark Cluster True Positive True Negative False Positive False Negative Precision Recall

DeathStarBench 7 0 0 0 100% 100%
RPCoverBench 142 0 1 0 99.30% 100%

Overall 149 0 1 0 99.33% 100%

TABLE III
RQ2: TIME COST OVERHEAD

Repository Language Service Lines of Code Baseline Time(s) Eval Time(s) Overhead

DeathStarBench Go hotelReservation 4,503 4.53 3.46 -23.62%

RPCoverBench

Typescript
A 2492 3.3 1.98 -40.0%
B 2486 3.26 2.003 -38.56%
C 2475 3.86 2.009 -47.97%

Python
A 1942 5.21 3.683 -29.32%
B 1915 3.83 3.649 -4.73%
C 1912 3.77 3.623 -3.9%

Go
A 3795 5.56 3.484 -37.33%
B 3786 5.01 3.425 -31.64%
C 3656 4.14 3.416 -17.48%

Java
A 8296 - 26.332 -
B 8330 - 26.098 -
C 8373 - 25.819 -

C++
A 13953 23.55 47.684 102.48%
B 13930 23.2 47.496 104.72%
C 13922 23.5 47.382 101.62%

grpc C++ - 934,936 1110.53 3062.09 175.73%

grpc-go Go - 85,890 15.39 11.90 22.68%

for grpc-go. Moreover, RPCover reduced memory usage to
about 30% and 97% of the baseline on grpc and grpc-go,
respectively.

VI. THREATS TO VALIDITY

A. Internal Validity

For internal validity, a suitable benchmark for our work does
not currently exist. In particular, we need a multilingual bench-
mark where all services utilize gRPC. Consequently, we have
to design and implement a multilingual benchmark evaluation
framework that incorporates complex service call sequences.
While this benchmark may not perfectly reflect real-world
scenarios, as actual large-scale microservice systems could
involve thousands of services with intricate dependencies, it is
designed to emulate a variety of situations for comprehensive
testing.

In our implementation, we can not completely eliminate the
possibility of a false-positive when a user-defined type shares
the same names as the service and method names in a gRPC
definition. This occurrence is rare in practice, as it requires
an exact match for both the type name and method names.
However, even in these rare instances, our tool RPCover
remains robust - it will not miss any gRPC calls that it should
identify. Additionally, we provide an interface enabling users

to define their own matching logic, catering to the needs of
those using their own Protocol Buffer compiler plugins.

B. External Validity

Our approach has been implemented and evaluated for
compatibility with the gRPC framework. However, it carries
the potential for extending to other protocols that also utilize
Protocol Buffers. Furthermore, in theory, our approach can
be generalized to encompass all 11 programming languages
supported by gRPC.

RPCover leverages the existing SCIP indexers to build the
index for a specific repository. As a result, our approach’s
performance and reliability hinges on these external tools. It is
worth noting that the tools employed in RPCover may contain
certain known or unknown bugs. While we have addressed
several bugs in our version, the possibility of yet-undiscovered
issues remains.

VII. RELATED WORK

Multiple approaches aim to perform static analysis to re-
cover code dependencies.

Microvision [14] leverages the Abstract Syntax Tree (AST)
of the code to parse the codebase and identify endpoints.
This enables Microvision to infer the complete structure
of microservices. However, their approach only takes into
account the same programming language. In contrast, our



TABLE IV
RQ2: MEMORY COST OVERHEAD

Repository Language Service Lines of Code Baseline Peak Memory(MB) Eval Peak Memory(MB) Overhead

DeathStarBench Go hotelReservation 4,503 521.6 546 4.68%

RPCoverBench

C++
A 13,953 1195 181.8 -84.79%
B 13,930 1195 179.0 -85.02%
C 13,922 1208 182.0 -84.93%

Go
A 3,795 484 541.2 11.81%
B 3,786 487 542.95 11.49%
C 3,656 516 545.85 5.78%

Java
A 8,296 - 1010.55 -
B 8,330 - 1018.95 -
C 8,373 - 1016.15 -

Python
A 1,942 124 184.95 49.15%
B 1,915 123 184.65 50.12%
C 1,912 122 185.6 52.13%

TypeScript
A 2,492 224 223.4 0.37%
B 2,486 220 222.95 1.34%
C 2,475 218 224.3 2.89%

grpc C++ - 934,936 2,794 812 -70.93%

grpc-go Go - 85,890 1485 1444 -2.76%

evaluation considers five programming languages, and it is
easy to extend, allowing for a more comprehensive analysis.
LAAST [17] has the objective of converting language-specific
code representations into a Language-Agnostic Abstract Syn-
tax Tree (LAAST) to enable cross-language analysis of service
repositories. However, the implementation of LAAST for mul-
tiple programming languages can be resource-intensive and
expensive, posing a significant challenge in terms of practical
adoption and scalability. In contrast, our approach offers ease
of use and scalability through parallel execution and analysis.

Bushong et al. [18] utilize source code analysis to identify
entities and bounded contexts within services, facilitating a
better understanding of the system’s architecture. However,
their method is specifically designed for the Springboot frame-
work. Granchelli et al. [19] utilize a combination of static and
dynamic analysis, incorporating source code and Dockerfiles,
to reconstruct the architecture of a system. On a similar note,
Ibrahim et al. [20] leverage Dockerfiles to construct attack
graphs and identify security vulnerabilities in container im-
ages. However, in our approach, we specifically concentrate on
analyzing the calling dependencies within the code repository.

VIII. CONCLUSION

In this paper, we introduce RPCover, a novel approach
for static service dependency recovery based on source code
analysis. By leveraging the concept of analysis on top of a
cross-language code indexing representation, RPCover enables
the construction of a multi-lingual (including Protocol Buffer
and other programming languages) and efficient dependency
recovery tool for gRPC. This approach can easily be integrated
into existing tools for further analysis, depending on the
actual demand. We have also proposed a benchmark that
includes five programming languages, with each language

encompassing three services, which can be utilized to test
RPCover’s efficiency.

In our evaluation, we used our own proposed benchmark
along with another benchmark, DeathStarBench. RPCover
achieves an accuracy of 99.33% in identifying service rela-
tionships, while maintaining an overhead of less than 200%
of the existing LSIF indexers across all benchmarks.
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