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Abstract—As cloud service systems grow in scale and complex-
ity, incidents that indicate unplanned interruptions and outages
become unavoidable. Rapid and accurate triage of these incidents
to the appropriate responsible teams is crucial to maintain ser-
vice reliability and prevent significant financial losses. However,
existing incident triage methods relying on manual operations
and predefined rules often struggle with efficiency and accuracy
due to the heterogeneity of incident data and the dynamic nature
of domain knowledge across multiple teams.

To solve these issues, we propose Triangle, an end-to-end
incident triage system based on a Multi-Agent framework.
Triangle leverages a semantic distillation mechanism to tackle the
issue of semantic heterogeneity in incident data, enhancing the
accuracy of incident triage. Additionally, we introduce multi-role
agents and a negotiation mechanism to emulate human engineers’
workflows, effectively handling decentralized and dynamic do-
main knowledge from multiple teams. Furthermore, our system
incorporates an automated troubleshooting information collection
and mitigation mechanism, reducing the reliance on human labor
and enabling fully automated end-to-end incident triage. Exten-
sive experiments conducted on a real-world cloud production
environment demonstrate that TRIANGLE significantly improved
incident triage accuracy (up to 97%) and reduced Time to Engage
(TTE) by as much as 91%, demonstrating substantial operational
impact across diverse cloud services.

I. INTRODUCTION

As cloud services grow in scale and complexity, effec-
tively managing system incidents is critical to ensure service
availability and prevent financial loss [1–3]. A crucial first
step is Incident Triage: assigning an incident to the correct
engineering team [4–6]. Misassignment leads to reassignment
cycles, significantly extending the Time To Engage (TTE) and
system risk exposure.

In modern large-scale cloud environments, a single service
typically involves multiple specialized teams with distinct
responsibilities—from infrastructure and networking to appli-
cation development and security. When incidents occur, they
often manifest as vague symptoms (e.g., “service unavailable”
or “slow response time”) that provide limited direct indication
of the root cause or responsible team. Traditional incident
triage processes rely heavily on manual operations combined

♢ These authors contributed equally to this work.
♠ Corresponding author. Email: minghuama@microsoft.com, hepin-

jia@cuhk.edu.cn

with predefined rules, where on-call engineers must investigate
using various diagnostic tools, often requiring coordination
across multiple teams through ad hoc meetings and escalations.
This manual process is not only time-consuming but also prone
to errors, as engineers may lack comprehensive knowledge of
all system components and their interdependencies.

The importance of accurate incident triage cannot be over-
stated. Poor triage decisions result in incidents being bounced
between teams, creating what we term “triage cycles”—each
misassignment extends the time before the correct team en-
gages with the problem, during which the system remains in a
degraded state. In production environments serving millions
of users, even minutes of additional downtime can trans-
late to significant revenue loss and customer dissatisfaction.
Therefore, rapid and accurate incident triage is not merely
an operational convenience but a business-critical capability
that directly impacts service reliability and organizational
efficiency.

While analogous to bug triage [7, 8], incident triage
poses unique and more difficult challenges. Unlike bug re-
ports, which are often detailed with reproduction steps and
developer-provided context, incident data typically consists of
sparse, automatically generated alerts (e.g., “CPU utilization
high”) or vague user complaints (e.g., “Cannot log in”). This
lack of rich semantic context makes it difficult for traditional
classification or keyword-based methods to achieve the re-
quired accuracy, leading to frequent manual intervention and
costly delays. This multi-hop, cross-team diagnostic process,
as illustrated in Fig. 1, consumes substantial human resources
and time.

As shown in Fig. 1, this process involves three teams
and multiple engineers, and can be both time-consuming and
complex. Without a thorough investigation by Teams A and B,
directly identifying Team C as the correct responsible party is
not feasible. To overcome these limitations, we first conducted
an in-depth study of incident management practices within a
leading global cloud provider. Our investigation reveals that
the inefficiency of manual triage is rooted in three fundamental
challenges:
• Incident Semantic Heterogeneity: Incident data exhibits

significant variation in how semantically similar issues are
described. Key phrases crucial for triage are scattered and



Fig. 1: Comparison of manual incident triage and TRIANGLE.
In the manual process, a sign-in issue on Mac devices is
escalated across Teams A, B, and C before resolution. Each
team applies their domain knowledge and tools in sequence.
In contrast, TRIANGLE streamlines this multi-team workflow
by using agents to simulate human collaboration, reducing
handoffs and accelerating resolution.

lack standardized templates, hindering traditional methods.
LLMs’ contextual understanding can better capture these
underlying associations despite diverse phrasings.

• Decentralized and Dynamic Domain Knowledge: Effec-
tive incident triage often requires integrating knowledge
from multiple, independently evolving teams. A team’s
responsibilities and associated domain knowledge change
over time, necessitating a flexible approach like a multi-
agent framework where agents with specific team knowledge
can collaborate.

• High Human Labor: Relying heavily on manual injection
of domain knowledge for incident triage incurs substantial
human effort and cost, impeding end-to-end automation and
increasing the time to engage.

To address these challenges, we design and implement
TRIANGLE, an end-to-end incident triage system built on a
Multi-Agent framework. We adopt a multi-agent approach to
simulate the real-world collaborative problem-solving among
different engineering teams. Specifically, TRIANGLE incor-
porates three key mechanisms: 1) A semantic distillation
mechanism that leverages LLMs to extract core actionable
information from noisy incident data, tackling the semantic
heterogeneity. 2) A framework of multi-role agents with
a novel negotiation protocol that mimics how expert teams
collaborate, addressing the challenge of decentralized and
dynamic domain knowledge. 3) An automated Team Infor-
mation Enrichment mechanism that enables end-to-end triage
without manual data curation, thus reducing high human labor.

We conduct extensive experiments with TRIANGLE using
incident triage data collected from a real-world production

environment serving tens of millions of users. TRIANGLE has
significantly improved incident triage accuracy (up to 97%)
while reducing Time to Engage (TTE) by up to 91%, demon-
strating substantial operational impact across diverse cloud
services. In our offline experiments, TRIANGLE outperforms
the state-of-the-art method (DeepCT [4]) by 26%–42% relative
improvement in hop accuracy across all hops, achieving up to
91.7% accuracy at hop 5 without relying on manually enriched
discussions. To show the general capabilities of TRIANGLE,
we also conducted experiments on publicly available datasets.
The results show that TRIANGLE generalizes beyond incident
triage, achieving 63.2% accuracy on the MSR 2013 Bug
Dataset—outperforming all baselines by an average of 51.0%,
with gains ranging from 15.3% to 134.9%. Our model has
been successfully deployed in a system with tens of millions
of users at a leading global technology company.

Our contributions are summarized as follows:

• We design, implement, and evaluate TRIANGLE, to the best
of our knowledge, the first end-to-end incident triage system
leveraging a Multi-Agent framework to automate triage in
large-scale cloud environments.

• We propose a novel multi-role agent framework with an
effective negotiation mechanism that mimics expert col-
laboration to dynamically manage decentralized domain
knowledge 1.

• We introduce an automated Team Information Enrichment
mechanism that enables fully automated triage, including
reassignments, significantly reducing human labor.

• We demonstrate the effectiveness and practical value of
TRIANGLE through its successful deployment in a large-
scale production environment serving tens of millions of
users, providing valuable insights for both industry and
academia.

II. BACKGROUND

A. Incident Data

Incidents, triggered by system anomalies or service inter-
ruptions, are critical indicators of service quality in large-
scale cloud systems. Rapid incident resolution is essential
for maintaining service availability and minimizing financial
impact. However, the inherent complexity of modern cloud en-
vironments, with numerous interconnected components, makes
processing incident data a significant challenge [4, 9–19].

The primary challenge stems from the nature of the data
itself. Incident data is typically semi-structured, compris-
ing system-generated telemetry and, most critically, natural-
language descriptions from engineers and users, as shown in
Fig. 2. This unstructured text often contains subtle contextual
cues. For instance, incidents with similar textual patterns may
be routed to different teams based on context, while different
patterns can point to the same root cause and team. This
ambiguity makes accurate, automated classification difficult.

1Our code is available on https://aka.ms/triangle-open-source



MitigatedStatus:
[Region] System Issuer returns NullReferenceException Severity:  Level 2

Duration: 1h27mService: Azure CommunicationID#461153xxx

Summary & Disscussion
Date Start: 2023-12-21 14:32:33 GMT+8
What we know: Database connections, API Gateway
authentication, and any operations involving storage blob
access in  Area A and Area B are experiencing failures. The
incident affected multiple tenants, availability zones,
network components, and service endpoints.d

Impact Assessment
Metric: 42d6616d-c9c5-370a-a8ba-17ead74f3114

Troubleshooting Guide

ARM applied mitigation to Area A and other regions at
about 8:45 PST. Area B continued to have issues, so
RP redirected traffic from Area B to Area A. This
mitigated the issue for events.

Incident is mitigated by the monitor [PROD] RP
Cluster Reliability Monitor. Service B Health
Page B Health Checks Dashboard: Reliability
Dashboard DGrep

Acknowledged, proceeding with the detailed analysis of
the failures. Initiating diagnostics on Service A retrieval
issues and ARM call failures in Area A and Area B.

Dashboard Link

Team Assignment: Team XXX

Fig. 2: Example of incident data post-triage, including meta-
data (title, duration, status, severity), a content body (summary
and two related discussions), and additional fields such as
impact assessment, consulted troubleshooting guide, and final
team assignment.

B. Incident Triage

Incident triage is the process of assigning incoming in-
cidents to the appropriate engineering teams for mitigation.
Inefficient triage directly increases Time to Engage (TTE),
harming service quality and customer trust. Current triage
processes are often manual, relying on static rules and human
expertise. This requires engineers to manually investigate,
collaborate across teams, and frequently re-route incidents,
leading to prolonged resolution times.

Our empirical study of over 3,000 teams during a 12-month
period highlights the severity of this issue. As shown in Fig. 3,
incidents requiring multiple re-assignments (hops) suffer from
exponentially increasing triage times and communication over-
head. This finding underscores the urgent need for an effective
automated triage system.

While analogous to bug triage, incident triage presents
unique challenges. Incident data is often generated automati-
cally and lacks the rich, structured context of a bug report.
Consequently, simple classification models are insufficient,
and incidents are frequently misrouted. This manual re-routing
process, characterized by high Transfer Hop Counts, further
inflates TTE and Time to Mitigation (TTM), confirming the
inadequacy of existing systems.

C. Multi-Agent Systems for Collaborative Problem-Solving

Large Language Models (LLMs) have demonstrated strong
reasoning capabilities as autonomous agents [20–22]. How-
ever, for complex problems like incident triage, a single agent’s
knowledge and perspective are often insufficient [20]. This
limitation has motivated the development of LLM-based multi-
agent systems, where multiple specialized agents collaborate
to solve a problem.

By assigning distinct roles, capabilities, and knowledge to
different agents, these systems can mirror human teamwork
and leverage collective intelligence [20, 23–27]. This paradigm
is particularly well-suited for incident triage, which inherently
involves collaboration and discussion among different expert

Fig. 3: Median triage time units (green) and median human
discussion turns (red) per incident, segmented by number
of transfer hops, aggregated across over 3,000 teams and
hundreds of services over 12 months.

teams. For example, agents can be designed to represent dif-
ferent engineering teams, each with its own domain expertise,
to collectively diagnose and route an incident. This approach
has shown success in other complex software engineering
domains, such as collaborative software development [28, 29]
and operations [9, 30–33].

Frameworks like AutoGen [34] and CAMEL [35] pro-
vide robust foundations for building such collaborative sys-
tems. They enable structured communication and coordination
among agents, allowing them to debate, refine hypotheses,
and reach a consensus—a process analogous to the human-
led discussions observed in incident triage. This capability
to simulate collaborative decision-making makes multi-agent
systems a promising approach to automate and enhance the
incident triage process.

III. APPROACH

A. Overview

TRIANGLE is a multi-agent system that automates incident
triage by emulating human expert collaboration. The system
employs three agent types (the Analyzer Agent, the Decider
Agent, and the Team Manager Agent), which operate across
three phases: incident semantic distillation (Section III-B),
candidate generation (Section III-C), and collaborative nego-
tiation (Section III-D). The overall workflow is illustrated in
Fig. 4. This multi-agent architecture leverages two key de-
sign principles: (1) collaborative workflow simulation, where
agents with different expertise work together through analysis
and consensus-building, and (2) stratified knowledge represen-
tation, where the Analyzer Agent maintains technical knowl-
edge, the Decider Agent holds strategic criteria, and Team
Manager Agents possess operational knowledge. This enables
comprehensive triage decisions from technical, strategic, and
operational perspectives.

B. Phase 1: Incident Ingestion and Semantic Distillation

Raw incident descriptions are often inconsistent and noisy,
posing a challenge for automated triage. To address this, each



Fig. 4: TRIANGLE framework. The Analyzer Agent ensures
semantic clarity of incoming incidents. The Decider Agent
proposes candidate teams based on historical data and func-
tional expertise, initiating a discussion group with relevant
Team Manager Agents. These agents access external tools
to contribute insights. Through discussion and voting, the
incident is assigned; if unresolved, the process iterates with
a refined candidate pool.

new incident is first processed by the Analyzer Agent in a
phase called semantic distillation. The agent’s core function
is to normalize the varied descriptions into a structured,
semantically-aligned format. This canonical representation
mitigates ambiguity and ensures the data is optimized for
reliable interpretation by downstream agents in the triage
workflow. The semantic distillation mechanism itself is de-
signed to identify key phrases essential for triage and to ensure
conceptual consistency between the incident’s description and
the organization’s team functional documents, which constitute
a key knowledge environment. This is achieved through two
coordinated steps: semantic alignment and key phrase extrac-
tion.

Initially, semantic alignment is performed to harmonize
the incident’s terminology with that used within the team
functional documents. This alignment process involves: (1)
Initial Keyword Identification using TF-IDF to identify sta-
tistically significant terms (e.g., “latency”, “API error”); (2)
Terminology Matching to cross-reference these terms with a
domain-specific glossary derived from team functional doc-
uments; and (3) LLM-based Semantic Refinement, where an
LLM component leverages the team functional documents
to rephrase the incident description, ensuring it aligns with
established vocabulary while preserving the original meaning.

Subsequent to successful alignment, the Analyzer Agent
proceeds with key phrase extraction to distill core triage
information. In this step, words within the aligned incident
data are assigned weights based on their TF-IDF scores relative
to the entire collection of team functional documents. These
weights, along with the semantically aligned incident text, are
then presented to another LLM-driven component tasked with

expert-level summarization. This component acts as a triage
expert, analyzing the incident to extract three pivotal types of
key phrases: those identifying the failure’s location, describing
its symptoms, and suggesting the capabilities needed for
resolution. This analysis is informed by its understanding of
relevant contexts, drawn from the team’s functional documents
that it can access. These extracted key phrases are then
appended to the original incident data, serving as a refined
and focused input for the Triage Decider Agent in the next
phase.

Algorithm 1 Triage Decider for Incident Team Assignment

Require: Incident I , Historical IncidentsH, Team Documents
D

Ensure: Candidate Teams T ∗

1: // Step 1: Compute similarity with historical incidents
2: V← TFIDF(H) ▷ Vectorize H using TF-IDF
3: S(I,H)← cosine(TFIDF(I),V) ▷ Compute similarity
4: T1 ← {teams of top-K(S(I,H))} ▷ Select top K team

candidates
5: // Step 2: Candidate teams refinement using LLM
6: D′ ← LLMcompress(D) ▷ Compress team documents,

high compress rate
7: T2 ← {top-N(LLMmatch(I,D′))} ▷ Retrieve top N

team candidates
8: // Step 3: Final ranking of candidates
9: D′′ ← LLMcompress(D) ▷ Compress team documents,

low compress rate
10: T ∗ ← LLMrank(I, T1 + T2,D′′, key phrases) ▷ Rank

candidates
11: return T ∗

C. Phase 2: Candidate Generation and Initial Selection

With the semantically distilled incident information, the
Triage Decider Agent identifies an initial set of suitable team
candidates. For initial assignment, it employs a two-pronged
approach to generate candidates, as detailed in Algorithm 1.

a) Historical Incident Matching: The current incident is
vectorized using TF-IDF and compared against a vectorized
history of past incidents (H) using cosine similarity. The teams
that handled the top-K most similar historical incidents are
selected as T1.

b) Team Document Matching: To assess relevance
against team capabilities, an LLM-powered component within
the Triage Decider Agent first interacts with the team func-
tional documents (D). It strategically processes and com-
presses these documents (e.g., through summarization) into
more concise representations (D′) suitable for efficient match-
ing while aiming to preserve core functional information. Sub-
sequently, this or another LLM-component actively consults
these condensed representations (D′), evaluating the current
incident against each team’s summarized profile to identify
and retrieve the top-N most relevant teams as T2.

The two sets of candidates, T1 and T2, are combined. To
refine this combined list, the Triage Decider may activate a



further LLM-driven analysis. This component then undertakes
a more in-depth interaction with less compressed versions of
the team documents (D′′) corresponding to the combined can-
didates, and cross-references the incident specifics, including
the key phrases extracted in Phase 1, against each team’s
detailed capabilities to establish a final ranking and select the
top M teams for the discussion group. M can be configured
by engineers according to the actual service requirements.

D. Phase 3: Collaborative Triage and Negotiation Loop

The top M candidate teams selected by the Triage Decider
form a discussion group to collaboratively determine the
most appropriate team. This phase involves Team Manager
Agents and employs a voting-based negotiation mechanism
that emulates human expert collaboration. Each team within
the organization has a corresponding Team Manager Agent.
Its primary role is to assess if an incident falls within its
team’s responsibility, leveraging its specific domain knowledge
and tools. When a team’s responsibilities change, only its
functional documentation needs updating, which the agent
dynamically uses.

1) Team Information Enrichment Mechanism: A core in-
novation of TRIANGLE is the Team Information Enrichment
mechanism, which enables Team Manager Agents to aug-
ment incident data with relevant contextual information. This
mechanism, illustrated in Fig. 5, automates the retrieval and
summarization of external data:
• Information Retrieval: The Team Manager Agent extracts

entities like time ranges and component names from the
incident. It uses these to automatically generate and execute
queries against its team-specific monitoring databases (e.g.,
for logs). It can infer missing query parameters based on the
incident description and database interface documentation.

• LLM-based Summarization: The retrieved logs, often volu-
minous and noisy, are not directly used. Instead, an LLM-
powered analytical component within the Team Manager
Agent is activated to interact with this retrieved data.
This component intelligently sifts through the logs, treating
them as a dynamic information environment, and correlates
log events with the incident description it has access to.
Drawing on its reasoning capabilities, it then synthesizes
these findings into “enriched discussion” points, covering:
(a) Potential events in the logs related to the incident;
(b) Correlation between log information and the incident
description; (c) Troubleshooting suggestions derived from
the logs [36, 37].

This enriched information, tagged with the providing team, is
added to the incident.

2) Voting-based Negotiation: Once all Team Manager
Agents in the discussion group have had a chance to provide
enriched information, the aggregated details are shared among
them. Each Team Manager Agent then votes for the team it
deems most suitable to handle the incident from the current
discussion group. If a single team receives a majority of votes
(e.g., more than half), the incident is assigned to that team,
and the triage process concludes.

Team Manager

Incident Monitor Database
API 

Monitor Database

Query Generation

Related Monitor Log

Incident
Events in Monitor Log

Related Infomation

Troubleshooting Suggestion

Enriched Disscussion

Fig. 5: Team Information Enrichment Mechanism. Team Man-
ager Agents automatically retrieve and summarize relevant
monitoring data to enrich incident context for informed triage
decisions.

3) Reassignment Process: If the voting does not result in
a consensus, the negotiation is considered to have failed for
that round. The incident, now augmented with the collective
enriched discussion from all participating teams, is sent back
to the Triage Decider Agent. For reassignment, the Triage
Decider first removes teams from the failed negotiation round
from the immediate candidate pool to prevent loops. It then
leverages the newly acquired discussion information to enrich
the incident’s context. Finally, an LLM component selects
a new set of candidate teams by performing a nuanced
matching of the enriched incident against the team’s functional
documents. To focus on fresh insights from the negotiation, the
historical TF-IDF-based selection (Step 1 in Algorithm 1) is
typically not reused in these subsequent rounds. This negoti-
ation loop can repeat. To prevent infinite cycles, a maximum
number of reassignment loops is set (e.g., 5 loops in our
settings). If no consensus is reached after the maximum loops,
TRIANGLE assigns the incident based on the last voting result,
which could involve human engineers at this stage.

This multi-agent approach allows TRIANGLE to dynami-
cally adapt its triage strategy based on evolving information
and collaborative insights, mirroring complex decision-making
processes performed by human expert teams.

IV. EVALUATION

In this study, to fully evaluate the performance of TRIAN-
GLE in incident triage within a real-world production environ-
ment, we aim to address the following research questions:
• RQ1: Business Impact - How effective is TRIANGLE in

terms of time savings during incident triage in real-world
industry scenarios?

• RQ2: Overall Performance - What is the accuracy of
TRIANGLE in the continuous incident triage process within
large-scale cloud service systems?

• RQ3: Ablation Study - What is the contribution of each
key component to the overall performance of TRIANGLE?

• RQ4: General Capabilities - How does the general capabil-
ity of TRIANGLE perform? Can it achieve good performance
in tasks similar to incident triage (e.g. bug triage)?

A. Dataset

To evaluate the performance of TRIANGLE in real-world
scenarios, we collected 15 months of real incident data from



large-scale cloud service systems serving tens of millions of
users at a leading global technology company. These cloud
services involve hundreds of engineering teams. To ensure a
quantitative and objective experiment, we concentrated solely
on incidents that had been resolved, as their confirmed as-
signments facilitate an accurate assessment of the incident
triage process. Specifically, we split the data into a 12-month
period for historical incident data and a subsequent 3-month
period for evaluating the performance of TRIANGLE. For our
experimental analysis, we concentrated solely on incidents that
had been resolved, as their confirmed assignments facilitate an
accurate assessment of the incident triage process.

B. Experiment Setup

1) Metrics: Accuracy and Time to Engage are the two most
crucial evaluation metrics in incident triage. Below, we will
provide a detailed introduction to these two metrics.

Accuracy. Accuracy is a widely used metric in classification
tasks and is a core indicator for evaluating the end-to-end
performance of incident triage. However, in incident triage,
due to the involvement of reassignment, we further refine
the concept of accuracy. We introduce Hop Accuracy. Its
calculation is the same as traditional accuracy, but with a
restriction on the number of hops for reassignment. Hop
N Accuracy (N ≥ 1) represents the accuracy when the
number of assignments does not exceed N by the time the
model completes the final assignment. This places a higher
requirement on the model’s capabilities.

Time to Engage (TTE). TTE refers to the time elapsed from
when an incident is reported to when it is assigned to the
correct team. TTE is a key factor in measuring the efficiency
of incident triage. In practical scenarios, the model’s runtime
accounts for a minimal portion of the entire triage process.
This is because, during triage, engineers from different teams
may conduct further analysis of the incident, and there may
also be meetings between teams. The time spent by human
engineers in these activities constitutes the majority of the
triage process.

2) Baselines: To evaluate the performance of TRIANGLE,
we introduce several baseline methods.
• ContentBased [5]: Uses locality-sensitive hashing to find

suitable teams, helping mitigate cold start issues by iden-
tifying patterns in new or sparse data.

• InvertedIndex [38]: Builds an inverted index table re-ranked
by IDF scores to rank teams.

• LGBM [39]: Employs a one-vs-all LightGBM model to
handle sparse and unstructured data.

• MART [40]: Utilizes a multiple additive regression tree
(MART) model, trained with a one-vs-all FastTree [41]
classifier to assign incidents.

• DeepCT [4]: The state-of-the-art incident triage method
based on deep learning.
The first four methods are traditional machine learning

and statistical learning methods, which are widely used in
the industry. DeepCT [4] is a state-of-the-art incident triage

TABLE I: Average triage accuracy per services after deploying
TRIANGLE in large-scale service systems, along with the
percentage reduction in Time to Engage (TTE), comparing the
three months before and after deployment to ensure significant
observability and unbiased evaluation.

Team A B C D E F

Triage Accuracy (%) 92 82 96 64 96 97
TTE Reduction (%) 18 91 48 72 61 67

method based on deep learning. DeepCT utilizes Convolu-
tional Neural Networks (CNNs) to encode domain-specific
discussions. It then leverages Gated Recurrent Units (GRUs)
to capture temporal relations and applies attention mechanisms
to reduce the impact of noise. This method relies heavily on
the availability of extensive discussions from engineers.

Regarding the choice of foundational LLM, prior work [6]
has demonstrated through comprehensive experiments that
GPT-4 consistently outperforms GPT-3.5-Turbo across various
cloud operation tasks due to its superior reasoning capabilities.
However, their approach relies on single-prompt engineering,
whereas our TRIANGLE employs a multi-agent architecture
that decomposes complex incident triage into specialized sub-
tasks, enabling more focused and effective decision-making
processes.

C. RQ1: Business Impact

Adoption. TRIANGLE has been running in production and is
actively used to triage cloud incidents at a leading global tech-
nology company that serves tens of millions of users world-
wide. Two organizations within the company have adopted
TRIANGLE as their primary approach to incident triage: one
is a cloud platform provider operating multiple services, and
the other manages a large-scale, customer-facing service. Both
organizations integrate their incident management systems
with TRIANGLE to supply relevant data. Despite differences
in system architecture and domain knowledge, TRIANGLE has
demonstrated strong robustness and scalability across these
varied environments. Feedback from service teams highlights
the impact of the system:

“TRIANGLE’s automated routing capabilities help
reduce engineering toil and enhance customer ex-
perience by accelerating mitigation through more
efficient incident handling.”

Scale. While the exact number of incidents processed by
TRIANGLE is sensitive and cannot be disclosed, it operates
under high-scale production conditions. Specifically, it utilizes
approximately 600 million logs per day and analyzes over
2,000 distinct fault types. In total, more than 20 TB of data
is processed daily. This scale of operation underscores the
robustness and efficiency of TRIANGLE in handling diverse,
large-volume telemetry in real-world cloud environments.

TTE saving. Time to Engage (TTE) is a key business metric
for evaluating the efficiency of incident triage models. To



assess the real-world performance of TRIANGLE, we select
the six most recently updated services (designated A through
F) and compare data from the three months before and
after its deployment. The evaluation focuses on two primary
metrics: average triage accuracy after deployment and the
percentage reduction in TTE. Triage accuracy is measured by
comparing the team initially assigned by TRIANGLE with the
final resolving team. TTE reduction is calculated by comparing
the average TTE in the three months following TRIANGLE’s
deployment with the average from the three months prior.

The empirical results, summarized in Table I, demonstrate
the significant positive impact of TRIANGLE on incident
management workflows. Across the six production teams,
TRIANGLE generally shows high triage accuracy. Notably,
Teams C, E, and F achieve outstanding accuracy rates of 96%,
96%, and 97%, respectively. Team A also performs well, with
a triage accuracy of 92%. While Team B’s accuracy is slightly
lower at 82%, it still reflects a competent level of automated
triage. Team D shows a more modest accuracy of 64%. A
manual inspection reveals that the relatively modest accuracy
for Team D (64%) was primarily due to the templated nature
of its incident descriptions, which are typically generated
by monitoring tools. These descriptions often lack sufficient
contextual information, such as detailed incident logs, making
it challenging for TRIANGLE to perform accurate triage.

In terms of operational efficiency, measured by TTE reduc-
tion, TRIANGLE delivers substantial improvements across all
teams. Team B experiences the most dramatic impact, with a
91% reduction in TTE. This suggests that even with slightly
lower triage accuracy, automation by TRIANGLE significantly
streamlines the initial engagement process. Team D also sees
a strong reduction of 72%, followed by Team F (67%), Team
E (61%), and Team C (48%). Even Team A, which records the
smallest improvement, still benefits from an 18% reduction.

These results highlight a key strength of TRIANGLE: its
ability to not only accurately route incidents but also to
drastically shorten the critical initial period before an incident
receives attention.

D. RQ2: Overall Performance

To verify the effectiveness of TRIANGLE in a real-world
scenario, we compare the end-to-end incident triage perfor-
mance of TRIANGLE with other baseline methods. Based on
the maximum hop count of manual triage in historical incident
data, we evaluated the accuracy for hop counts ranging from
1 to 5.

It is crucial to distinguish our approach from methods like
DeepCT. DeepCT and other traditional models heavily rely
on pre-existing, human-generated discussion data for training
and inference. In contrast, TRIANGLE’s multi-agent system
actively generates its own “enriched discussion” by querying
team-specific tools and logs, mimicking the investigation pro-
cess of human engineers. This makes TRIANGLE far more
adaptive in real-world scenarios where initial incident data is
often sparse or systems are constantly changing.

TABLE II: End-to-end performance comparison of TRIANGLE
and baseline methods in a maximum of 5 transfer hops.

Method Hop Accuracy [%]
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

ContentBased 9.43 17.3 21.9 25.4 29.6
InvertedIndex 14.4 24.8 34.4 42.8 49.4

LGBM 3.12 3.65 4.66 5.11 5.96
MART 4.23 6.17 7.28 10.22 13.56

DeepCT 43.4 54.6 60.4 64.4 67.6
TRIANGLE 54.7 70.4 80.5 86.0 91.7

Furthermore, the multi-hop evaluation reflects our iterative
negotiation process. When agents participate in negotiation,
they follow a majority vote principle: if a candidate team
receives more than half of the votes from participating agents,
the incident is assigned directly. If no consensus is reached,
the discussion results are fed back to the Decider Agent, which
initiates a new selection of candidates with the now-enriched
incident information. We limit this process to a maximum of
5 hops, after which manual intervention is required. This con-
trasts with baseline methods, which we simulate for continuous
triage by sequentially feeding them the manually provided
enriched discussion data from the original incident logs.

It is worth noting that triage models based on traditional
machine learning methods in DeepTriage [5] (ContentBased,
InvertedIndex, LGBM and MART) are unable to perform
continuous triage. As a result, their hop accuracy does not vary
across different hops. Additionally, because DeepCT requires
manually provided enriched discussions, we sequentially pro-
vided DeepCT with the manually added enriched discussions
from the incident data in chronological order. In contrast, our
method did not use manually provided enriched discussions,
but instead utilized the Team Manager for automatic genera-
tion. The experimental results are shown in Table II.

According to the experimental results shown in Table II, our
proposed model, TRIANGLE, shows outstanding performance
compared to traditional machine learning methods and the
state-of-the-art method, DeepCT in end-to-end incident triage.
While some may question the absence of more contemporary
LLM baselines, we note that prior work [6] has already
established through extensive experimentation that GPT-4 sig-
nificantly outperforms GPT-3.5-Turbo in cloud operation tasks.
More importantly, their single-prompt approach, while effec-
tive, fundamentally differs from our multi-agent framework
that leverages specialized role division, iterative negotiation,
and automated information enrichment. This architectural dif-
ference enables TRIANGLE to handle complex triage scenarios
that would overwhelm a single-prompt system, regardless
of the underlying LLM’s capabilities. Besides, TRIANGLE
shows a significant improvement in accuracy as the hop count
increases. This highlights its capability to handle complex
scenarios involving multiple reassignment hops effectively.

For hop counts up to 1, TRIANGLE achieves an accuracy of
54.7%, surpassing all other methods, including DeepCT, which
stands at 43.4%. As the hop count increases to 5, TRIANGLE
maintains its superior performance, reaching an accuracy of



TABLE III: Ablation study results of different components of
TRIANGLE on Hop Accuracy.

Method Hop Accuracy [%]
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

w/o ST 49.1 62.2 76.8 81.1 86.1
w/o MAT 42.8 54.6 63.4 67.5 70.4
w/o TIE 49.6 60.1 61.7 63.8 65.8

TRIANGLE 54.7 70.4 80.5 86.0 91.7

91.7%, a substantial improvement over DeepCT’s 67.6%.
This demonstrates TRIANGLE’s robustness and effectiveness
in continuous triage without the need for manually enriched
discussions. The automatic generation of enriched discussions
by the Team Manager in TRIANGLE plays a crucial role
in achieving this enhanced performance, making it a highly
effective solution for real-world incident triage scenarios.

Further in-depth analysis reveals that as the Hop Count
increases, the performance improvement of DeepCT is less
than that of TRIANGLE. We believe this is due to the forgetting
phenomenon caused by the GRU model in DeepCT when
the sequence length increases. In contrast, TRIANGLE benefits
from the powerful memory and comprehension capabilities of
the Transformer model in LLM for long sequences. Therefore,
its performance is not affected by the increased sequence
length when the Hop Count increases.

To assess the robustness and generalization of TRIANGLE,
we randomly selected nine different services from the system
and evaluated the performance of various incident triage
models across these services. The results are illustrated in
Fig. 6.

The experimental findings reveal that TRIANGLE consis-
tently achieves superior Hop Accuracy across the majority of
services, with notable improvements over baseline methods
observed at the 2nd or 3rd hop. This enhancement is attributed
to TRIANGLE’s multi-agent negotiation mechanism, which
effectively aggregates information from multiple teams. This
process introduces substantial external information to incidents
that initially lack sufficient details, thereby significantly im-
proving triage performance.

Our experiments demonstrate that TRIANGLE excels in end-
to-end incident triage performance in real-world scenarios.

E. RQ3: Ablation Study

To evaluate the contribution of each key component in
our approach, we conducted an ablation study following the
experimental setup of Section IV-D. We removed the semantic
distillation (w/o ST), the Multi-Agent Negotiation mechanism
(w/o MAT), and the Team Information Enrichment mechanism
(w/o TIE), respectively. Since multi-agent negotiation is the
core operation of incident triage, to ensure the normal opera-
tion of TRIANGLE after removing the multi-agent negotiation
mechanism, we allowed the Triage Decider to directly assign
based on the ranking of team candidates. Table III shows our
experimental results.

From the experimental results presented in Table III, it is
evident that each of the key components in our proposed
approach contributes significantly to the overall performance.
The results show that removing any of the components leads to
a decrease in Hop Accuracy across all Hop counts (Hop 1 to
Hop 5). Specifically, without the Semantic Distillation (w/o
ST), the performance drops notably, achieving only 49.1%
Hop 1 accuracy, which is a 5.6% decrease compared to the
full model. This drop in performance indicates that semantic
distillation is crucial for accurate hop prediction, allowing the
system to make more informed decisions based on enriched
semantic information.

The most substantial performance degradation is observed
when the multi-agent negotiation mechanism is removed(w/o
MAT). The accuracy drops to 42.8% for Hop 1, which is
almost a 12% reduction compared to the full model. The
Hop 5 accuracy also sees a significant decline to 70.4%.
This demonstrates that the negotiation mechanism is vital for
optimizing the triage decision-making process through collab-
orative decision-making among agents, rather than relying on
a naive ranking approach.

The absence of the Team Information Enrichment mecha-
nism (w/o TIE) also results in a significant reduction in per-
formance. The model’s Hop 2 and Hop 5 accuracies decrease
by 10.3% and 25.9%, respectively, compared to TRIANGLE.
These results confirm that enriched discussion is a key factor
for effective incident triage, as it provides crucial context that
enhances the decision-making capability of the multi-agent
system.

Notably, Team Information Enrichment has the greatest im-
pact on the performance of TRIANGLE. This is because the key
reason for the inaccuracy in incident triage is the insufficient
amount of information in raw incidents. The role of Team
Information Enrichment is to automatically obtain external
relevant information through agents, so the introduction of
external information has a decisive effect on the performance
of incident triage.

In contrast, our proposed method, TRIANGLE, consistently
outperforms all ablated versions across all metrics, achieving
the highest Hop Accuracy at every threshold. This indicates
that the combined use of semantic distillation, multi-agent
negotiation, and team information enrichment provides a syn-
ergistic effect that leads to superior triage performance.

F. RQ4: General Capabilities

Although TRIANGLE has been optimized specifically for
incident triage tasks, we conducted comprehensive experi-
ments to evaluate its generalizability using the MSR 2013 Bug
Dataset [42]. This dataset provides an ideal testing ground due
to its extensive collection of bug reports with detailed tech-
nical descriptions, comprehensive metadata, and assignment
histories similar to incident management workflows.

We selected this dataset for three primary reasons: First, its
public availability supports reproducibility. Second, it struc-
turally resembles incident triage data, as both tasks require
examining descriptive text, contextual metadata, and historical
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Fig. 6: Effectiveness comparison among TRIANGLE, ContentBased, InvertedIndex, LGBM, MART and DeepCT, for each
studied cloud services (the x-axis represents the number of triage hops and the y-axis presents the accuracy of incident triage).

TABLE IV: Bug triage accuracy of TRIANGLE and baseline
methods on the MSR 2013 Bug Dataset.

Model Content
Based

Inverted
Index LGBM MART DeepCT TRIANGLE

Acc (%) 38.1 26.9 54.8 53.8 52.1 63.2

assignment records. Third, the MSR 2013 Bug Dataset is
widely recognized within the bug triage research commu-
nity [4].

Since the dataset lacks the “team function document” neces-
sary for TRIANGLE, we adopted a semi-manual approach: for
each of 20 randomly selected developers, we summarized key
assignment phrases based on existing metadata and historical
bug resolution records. This approach balanced manual effort
with adequate coverage for evaluation across 200 assembled
bug cases.

As shown in Table IV, TRIANGLE achieved 63.2% accuracy
compared to DeepCT’s 52.1% under identical experimental
conditions. While both methods showed decreased perfor-
mance compared to incident triage—likely because bug reports
contain less rich textual information and require more domain-
specific software knowledge—TRIANGLE maintained signifi-
cant superiority. We attribute this performance to our method’s
ability to incorporate historical assignment information and
domain-specific knowledge from key phrase summarization,
validating TRIANGLE’s generalizability to similar technical
classification tasks.

V. DISCUSSION

A. Lessons learned

To enhance the accuracy of incident triage, we have iden-
tified several key lessons after deploying TRIANGLE to pro-
duction systems.

First, the completeness and accuracy of historical data
are critical. TRIANGLE relies heavily on historical incident
triage records as well as each team’s functional documentation
to perform automated triage. A common failure mode we
observed stemmed from missing or insufficient historical sig-
nals—such as lacking indicative keywords—that are essential
for associating incidents with the correct team. In other cases,
the team documentation itself was vague or ambiguous, mak-
ing it difficult for the system to derive meaningful mappings.

Second, the presence of reasoning-based textual content
in historical incident records significantly improves triage
performance. For instance, in RQ3, we found that teams with
higher triage accuracy often had incident logs that included
explicit reasoning (e.g., “after seeing this log, we determined
it falls outside our team’s scope”). Such information allows
the model to better understand the decision-making process
and improves its ability to generalize to new incidents.

To address these challenges, we experimented with several
strategies to support underperforming teams. These included
standardizing documentation formats and terminology to im-
prove textual consistency and allowing teams to integrate
custom systems to provide richer contextual information.
These efforts collectively helped TRIANGLE gain widespread
recognition from product teams during its deployment in real-
world scenarios.

B. Threat to Validity
Internal validity threats mainly stem from the implementation
of our method TRIANGLE and the comparison methods. To
mitigate this threat, two authors thoroughly review the code.
Specifically, we implement these methods based on a mature
industry framework.
External validity threats primarily concern the subjects used.
In our study, we employed data from several large-scale cloud
service systems. Although these data are derived from real



industry applications, the subjects may not fully represent
service systems in other companies. In future work, we will
apply TRIANGLE to a broader range of service systems.
Construct validity threats primarily lie in the choice of
parameters and metrics used. To mitigate the threat from
parameters, we employ grid search to optimize the parameters
in both TRIANGLE and the comparison methods. To address
the threat from metrics, we utilize the most commonly used
accuracy and time cost metrics in our study. In future work,
we plan to incorporate additional metrics, such as false pos-
itive rate and recall, to more comprehensively evaluate the
effectiveness and efficiency of TRIANGLE.

VI. RELATED WORK

Incident triage. Recent advancements in incident triage have
utilized deep learning to enhance accuracy and efficiency
[43]. DeepTriage [5] uses various machine learning models
to automate triage, improving accuracy by learning from his-
torical data. The most similar work is DeepCT [4], which per-
forms continuous incident triage using Convolutional Neural
Networks (CNNs) to encode domain-specific text and Gated
Recurrent Units (GRUs) to extract temporal relationships,
complemented by attention mechanisms to reduce noise. Its
effectiveness depends on extensive human discussions, which
cannot be fully automated. In contrast, our multi-agent-based
solution can collect troubleshooting information and manage
negotiation processes like a human.

Bug triage. Research on bug triage for traditional software is
extensive, focusing mainly on two approaches: learning-based
and information-retrieval-based methods. Learning-based ap-
proaches treat bug triage as a supervised classification prob-
lem, using techniques such as ensemble learning [7], and
deep learning with Convolutional Neural Networks (CNNs)
[44, 45] to classify bugs. Information-retrieval methods focus
on leveraging expertise and historical data, with approaches
like Latent Dirichlet Allocation (LDA) [46] to match devel-
opers to bugs, topic-modeling [8] to map bug report terms to
topics, and historical bug-fix analysis [47] to link developers,
code components, and bugs. However, incident triage presents
a more complex challenge in industry practice because of the
intricate nature of cloud systems.

LLM for cloud systems. In recent years, the integration
of Large Language Models (LLMs) into cloud systems has
gained significant traction, reflecting a broader trend toward
enhancing automation and efficiency in cloud operations.
Research and practical implementations have demonstrated
how LLMs can be leveraged for various tasks, including
incident detection [16, 48], assessment [49, 50], and diagno-
sis [1, 13, 51? –57]. For example, RCAgent [58] enhances
LLM-generated root cause reports with a Self-Consistency
mechanism and domain-specific knowledge integration. ReAct
[59] applies LLMs to root cause analysis in cloud manage-
ment, showing high performance and accuracy with real-
world data. DB-GPT [60] merges LLMs with traditional
databases to improve natural language query responses, fea-

turing a retrieval-augmented generation system and adaptive
learning. Wang et al. [6] conducted comprehensive evalua-
tions of LLMs for cloud operations, demonstrating GPT-4’s
superiority over GPT-3.5-Turbo across various tasks. However,
their approach primarily relies on carefully engineered single
prompts, which, while effective for specific tasks, lacks the
systematic decomposition and collaborative decision-making
capabilities that complex incident triage demands. To the best
of our knowledge, no existing multi-agent solutions have been
proposed specifically for incident triage. TRIANGLE is the
first end-to-end multi-agent based incident triage approach.
Nonetheless, it is quite natural to leverage LLMs to emulate
human capabilities in performing triage tasks.

VII. CONCLUSION

Effective and accurate incident triage is crucial for main-
taining service quality and reducing time to engagement and
mitigation in large-scale cloud service systems. In this paper,
we present TRIANGLE, an end-to-end incident triage system
designed using a Multi-Agent framework. We introduce a
novel semantic distillation mechanism that leverages the pow-
erful semantic understanding capabilities of LLMs to tackle
the issue of incident semantic heterogeneity, significantly
enhancing triage accuracy. Additionally, we develop a multi-
role agent framework equipped with an effective negotiation
mechanism, allowing the system to dynamically manage multi-
team domain knowledge and simulate the workflow of hu-
man engineers. Moreover, TRIANGLE includes an automated
team information enrichment mechanism, enabling end-to-end
triage without incurring additional human labor costs, even
in scenarios requiring incident reassignment. Extensive exper-
iments on real-world incident triage data from a production
system serving tens of millions of users demonstrate the strong
performance and practical utility of TRIANGLE. The system
has improved triage accuracy up to 97% while reducing Time
to Engage (TTE) by up to 91%. The deployment of TRIANGLE
in a production system serving tens of millions of users in a
leading global technology company has shown its effectiveness
and reliability in real world environments. We believe that
our approach can provide valuable insights and serve as a
foundation for future research and development in automated
incident triage systems for large-scale cloud services.
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